The number of edges in k-quasi-planar graphs

نویسندگان

  • Jacob Fox
  • János Pach
  • Andrew Suk
چکیده

A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is n(logn) . In the present note, we improve this bound to (n logn)2 c k (n) in the special case where the graph is drawn in such a way that every pair of edges meet at most once. Here α(n) denotes the (extremely slowly growing) inverse of the Ackermann function. We also make further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of edges of such graphs is at most 2 6 n logn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Quasi-Planar Graphs Have a Linear Number of Edges

A graph is called quasi-planar if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph with n vertices is O(n).

متن کامل

New Bounds on the Maximum Number of Edges in k-Quasi-Planar Graphs

A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. An old conjecture states that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n vertices is O(n). Fox and Pach showed that every kquasi-planar graph with n vertices and no pair of edges intersecting in more than O(1) points has at most n( log n log k ) k) edges. We improve this up...

متن کامل

Beyond Outerplanarity

We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer k-planar graphs, where each edge is crossed by at most k other edges; and, outer k-quasi-planar graphs where no k edges can mutually cross. We show that the outer k-planar graphs are (b √ 4k + 1...

متن کامل

k-Quasi-Planar Graphs

A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. A topological graph is simple if every pair of its edges intersect at most once (either at a vertex or at their intersection). In 1996, Pach, Shahrokhi, and Szegedy [16] showed that every n-vertex simple k-quasi-planar graph contains at most O ( n(logn) ) edges. This upper bound was recently improved (for la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013